Objective & Strategy	Concrete	Concrete Pictorial					
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.	3 yort yort 2 yo 2 yo 2 yo 2 yo 2 yo 2 yo 2 yo 2 yo 2 yo 2 yo 2 yo yo 2 yo yo 2 yo 2 yo yo 2 yo 2 yo yo 2 yo 2 yo yo 2 yo 2 yo yo 2 yo 2 yo yo yo yo yo yo yo yo yo yo	4 + 3 = 7 5 3 $10 = 6 + 4$ Use the part-part whole diagram as shown above to move into the abstract.				
Starting at the big- ger number and counting on	Start with the larger number on the bead string and then count on to the smaller num- ber 1 by 1 to find the answer.	12 + 5 = 17 10 11 12 13 14 15 16 17 18 19 20 Start at the larger number on the number line and count on in ones or in one jump to find the answer. Begin to use a number line with less guidance and move towards portioning.	5 + 12 = 17 Place the larger number in your head and count on the smaller number to find your answer.				
Regrouping to make 10. This is an essential skill for column addition later.	6+5=11 6+5=11 Start with the bigger number and use the smaller number to make 10. Use ten frames.	3 + 9 = Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9 + 5 = 14$	7 + 4= 11 If I am at seven, how many more do I need to make 10. How many more do I add on now?				
Represent & use number bonds and related subtraction facts within 20	2 more than 5.		Emphasis should be on the language '1 more than 5 is equal to 6.' '2 more than 5 is 7.' '8 is 3 more than 5.'				

Objective &	Concrete	Pictorial	Abstract		
Strategy					
Adding multiples of	50= 30 = 20		20 + 30 = 50		
ten			70 = 50 + 20		
		3 tens + 5 tens = tens	40 + 🗆 = 60		
	Model using dienes and bead strings	30 + 50 = Use representations for base ten.			
Use known number	Children ex-		+ 1 = 16 16 - 1 =		
facts	plore ways of making num-		1 + = 16 16 - = 1		
Part part whole	bers within 20	+ = 20 20 - =			
	34	+ = 20 20 - =			
Using known facts		$(1 + \frac{1}{2}) = \frac{1}{2}$	3 + 4 = 7		
	000 0 00 000	(+) =	leads to		
			30 + 40 = 70		
		• • • •	leads to		
		Children draw representations of H,T and O	300 + 400 = 700		
Bar model		***	23 25		
Start to explore		222222 2 2 2	2		
missing number	3 + 4 = 7	7 + 3 = 10	22 + 25 - 40		
models			23 + 25 = 48		
	3 + ? = 7	7 + ? = 10	23 ?		
			48		

Cliffe VC Primary School Calculation Policy

Cliffe VC Primary School Calculation Policy

Objective & Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	20 - 4 - Pictures of dienes can be drawn,	20—4 = 16
Partitioning to sub- tract without re- grouping. Friendly numbers'	34-13 = 21 Use Dienes to show how to par- tition the number when subtracting without regroup- ing.	Children draw representations of Dienes and cross off.	43—21 = 22
Make ten strategy Progression should be crossing one ten, crossing more than one ten, cross- ing the hundreds.		76 80 90 93 'counting on' to find 'difference' 90 93 Use a number line to count on to next ten and then the rest.	93—76 = 17

Objective &	Concrete	Concrete Pictorial			
Strategy					
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtrac- tion through context of money	234 - 179	Children to draw place value counters to show their exchange.	Begin with expanded versions 240 34 14 100 70 9 0 50 5		
	Model process of exchange using Numi- con, base ten and then move to PV coun- ters.		Use language of 'exchange' rather than borrow.		
Year 5- Subtract with at least 4 dig- its, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	2234 - 1179 =	Children to draw place value counters to show their exchange.	Start with expanded versions as above. $\begin{array}{r} & & & & & & \\ & & & & & & \\ & & & & & $		
Year 6—Subtract with increasingly large and more complex numbers and decimal values.			$\begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{array}$		

Objective &	Concrete	Pictorial	Abstract
Strategy			
Doubling	Use practical activities using manip- ultives including cubes and Numicon to demonstrate doubling + = = = + = = = double 4 is 8 $4 \times 2 = 8$ $+ = = = =$	Double 4 is 8	Partition a number and then double each part before recombining it back together. 16 10 10 10 10 10 10 10 10 10 12 12 = 32
Counting in multi- ples	Count the groups as children are skip counting, children may use their fin- gers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of num- bers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25 , 30
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw 🚭 to show 2 x 3 = 6 Draw and make representations	2 x 4 = 8

.

.

Objective &	Concrete	Pictorial	Abstract	VA
Strategy				T T
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve prob There are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe objects and pictures. $\underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
Understanding ar- rays	Use objects laid out in arrays to find the an- swers to 2 lots 5, 3 lots of 2 etc.	Draw representations of arrays to show under- standing	3 x 2 = 6 2 x 5 = 10	PLCATION X

Objective &	Concrete	Pictorial	Abstract	
Strategy Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back	
	40 + 12 = 52		$ \begin{array}{c} 16 \\ 10 \\ 1 \\ 10 \\ 1 \\ x^2 \\ 20 \\ + 12 \\ = 32 \end{array} $	
Counting in multi-	Count the groups as children are skip	Number lines, counting sticks and bar	Count in multiples of a number aloud.	
ples of 2, 3, 4, 5, 10	counting, children may use their fin-	models should be used to show repre-		
from 0 (repeated addition)	gers as they are skip counting. Use bar models.	sentation of counting in multiples.	Write sequences with multiples of numbers.	
		57 57 57 57 57 57 57	0, 2, 4, 6, 8, 10	
	5+5+5+5+5+5+5+5+5+	0 5 10 15 20 25 30	0, 3, 6, 9, 12, 15	F
			0, 5, 10, 15, 20, 25 , 30	
	111 111 111 111 ?	3 3 3 3 ?	4 × 3 =	

Objective &	Concrete	Pictorial	Abstract	V9
Strategy				
Multiplication is commutative	Create arrays using counters and cubes and Numicon.	Use representations of arrays to show different calculations and explore commutativity.	$12 = 3 \times 4$ $12 = 4 \times 3$ Use an array to write multiplication sentences and reinforce repeated addition. 00000 $5 + 5 + 5 = 15$ $3 + 3 + 3 + 3 + 3 = 15$ $5 \times 3 = 15$ $3 \times 5 = 15$	
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.		$\begin{vmatrix} 4 & 2 \\ \hline 4 & 2 \\ \hline \times & = \\ \hline \times & = \\ \hline \times & = \\ \hline \div & = \\ \end{vmatrix}$	2 x 4 = 8 4 x 2 = 8 8 ÷ 2 = 4 8 ÷ 4 = 2 8 = 2 x 4 8 = 4 x 2 2 = 8 ÷ 4 4 = 8÷ 2 Show all 8 related fact family sentences.	CATION X

Objective &	Concrete	Pictorial	Abstract	VE C
Strategy				1 J•D
Column Multiplication for 3 and 4 digits x 1 digit.		H T O 10 10 10 10 10 10 10 10 1	2014 Expanded: start X 3 12 (4 x 3) 20 (10 x 2)	
	6000 Counters can be used on place v Counters can be used on place v	value grids, and then can be represented in pictures	30 (10 x 3) 6000 (2000 x 3) TH H T 0 2 0 1 4 x 3 This will lead to a compact	
Column multiplication In year 5 children must be able to multiply up to a four digit number by a 2 digit num- ber using the for- mal method of long multiplication	Manipulatives may still be used with the cor- responding long multiplication modelled alongside. 44 x 32= 40 4 30 100 100 100 10 10 10 10 10 10 100 100 100 10 10 10 10 10 2 10 10 10 10 10 10 10 10 10 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x 3 method. 1 8 x 3 on the first row Draw turtle's head (8 x 3 = 24, carry- ing the 2 for 20, then 1 x 3) Put a collar on the turtle' 18 x 10 on the 2 3 4 Put a collar on the turtle' 18 x 10 on the 2 nd row. Show multiplying by 10 by putting zero in 7 4 0 14 (1234 × 6)	PLCATION
			<u>1 2 3 ↓ 0</u> (1234 × 10) ^{(Lay an egg'} 1 9,7 4 4	×

<

Method for Long Division

Step 1: Set out sum (commonly referred to as 'bus shelter')					Step 14's you w	2: W are in vork o	/ork o n 7 as out ho are in	ut ho s ther ow ma 73	w ma e are any 1	any e 0 I4's	Step We v as s subtr	o 3: 5 vrite f howr ract a ne	i lots this u belo and br ext nu	of 14 nder f w. W ring de mber.	are 70. the sum /e then own the	
14 7	2	2	2	WIK		0	5			WIK		0	5			
14 /	.	2	2	14	14	7	3	2	2	14	14	7	3	2	2	
				28						28		7	0			
Childr	en write	out a lis	st of	42						42			3	ž		
help the	oles of tr em with	their ca	r to Icula-	56						56						
tions. \	Nritten r	methods	may	70					-	70						
be use	d to ensi	ure this l	list is	84						84						
Step 14's answe	4: W s are r abo	ork o in 32 ve a step	ut ho . Wri nd the 3.	w many ite the en repeat	Step 14	5: W 's are	ork o in 42 abov	ut hov 2 and ve.	w ma write	any e			Ansv	ver		Wik
	0	5	2	WIK		0	5	2	3	WIK						1
14	7	3	2	2 ¹⁴	14	7	3	2	2	14						
	7	0	l	-28		7	0	l		28			52	3		
		3	ž	42			3	2		42			-	•		
		2	8	56			2	8		56						
			4	2 ⁷⁰				4	2	70						
				84				4	2	84						
								-	0							

Y6 0 Ž