GETTING READY FOR A-LEVEL MATHEMATICS:

Examples:

10 Bridging Topics to prepare you for A level Maths:

- 1. Expanding brackets and simplifying expressions
- 2. Rearranging equations
- 3. Rules of indices
- 4. Factorising expressions
- 5. Completing the square
- 6. Solving quadratic equations
- 7. Solving linear simultaneous equations
- 8. Linear inequalities
- 9. Straight line graphs
- 10. Trigonometry

Expanding brackets and simplifying expressions

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds

Key points

- When you expand one set of brackets you must multiply everything inside the bracket by what is outside.
- When you expand two linear expressions, each with two terms of the form ax + b, where $a \ne 0$ and $b \ne 0$, you create four terms. Two of these can usually be simplified by collecting like terms

Examples

Example 1 Expand 4(3x-2)

4(3x - 2) = 12x - 8	Multiply everything inside the bracket by the 4 outside the bracket
---------------------	---

Example 2 Expand and simplify 3(x+5) - 4(2x+3)

$$3(x+5)-4(2x+3)$$

$$= 3x+15-8x-12$$

$$= 3-5x$$
1 Expand each set of brackets separately by multiplying $(x+5)$ by 3 and $(2x+3)$ by -4
2 Simplify by collecting like terms: $3x-8x=-5x$ and $15-12=3$

Example 3 Expand and simplify (x + 3)(x + 2)

$$(x+3)(x+2)$$

$$= x(x+2) + 3(x+2)$$

$$= x^2 + 2x + 3x + 6$$

$$= x^2 + 5x + 6$$
1 Expand the brackets by multiplying $(x+2)$ by x and $(x+2)$ by x and x by x by x and x by x and x by x and x by x and x by x by x and x by x and x by x and x by x by x and x by x

Example 4 Expand and simplify (x-5)(2x+3)

$$(x-5)(2x+3)$$

= $x(2x+3) - 5(2x+3)$
= $2x^2 + 3x - 10x - 15$
= $2x^2 - 7x - 15$
1 Expand the brackets by multiplying $(2x+3)$ by x and $(2x+3)$ by -5
2 Simplify by collecting like terms: $3x - 10x = -7x$

Rearranging equations

A LEVEL LINKS

Scheme of work: 6a. Definition, differentiating polynomials, second derivatives

Textbook: Pure Year 1, 12.1 Gradients of curves

Key points

- To change the subject of a formula, get the terms containing the subject on one side and everything else on the other side.
- You may need to factorise the terms containing the new subject.

Examples

Example 1 Make t the subject of the formula v = u + at.

v = u + at $v - u = at$	1 Get the terms containing <i>t</i> on one side and everything else on the other side.
$t = \frac{v - u}{a}$	2 Divide throughout by <i>a</i> .

Example 2 Make t the subject of the formula $r = 2t - \pi t$.

$r = 2t - \pi t$	1 All the terms containing <i>t</i> are already on one side and everything else is on the other side.
$r = t(2 - \pi)$ $t = \frac{r}{2 - \pi}$	 2 Factorise as t is a common factor. 3 Divide throughout by 2 - π.

Example 3 Make t the subject of the formula $\frac{t+r}{5} = \frac{3t}{2}$.

$\frac{t+r}{5} = \frac{3t}{2}$	1 Remove the fractions first by multiplying throughout by 10.
2t + 2r = 15t $2r = 13t$	2 Get the terms containing <i>t</i> on one side and everything else on the other side and simplify.
$t = \frac{2r}{13}$	3 Divide throughout by 13.

Example 4 Make *t* the subject of the formula $r = \frac{3t+5}{t-1}$.

$$r = \frac{3t+5}{t-1}$$

$$r(t-1) = 3t+5$$

$$rt-r = 3t+5$$

$$rt-3t = 5+r$$

$$t(r-3) = 5+r$$

$$t = \frac{5+r}{r-3}$$

- 1 Remove the fraction first by multiplying throughout by t-1.
- 2 Expand the brackets.
- **3** Get the terms containing *t* on one side and everything else on the other side
- **4** Factorise the LHS as *t* is a common factor.
- 5 Divide throughout by r-3.

Rules of indices

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds

Key points

- $\bullet \quad a^m \times a^n = a^{m+n}$
- $\bullet \qquad \frac{a^m}{a^n} = a^{m-n}$
- $(a^m)^n = a^{mn}$
- $a^0 = 1$
- $a^{\frac{1}{n}} = \sqrt[n]{a}$ i.e. the *n*th root of a
- $\bullet \qquad a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$
- $\bullet \qquad a^{-m} = \frac{1}{a^m}$
- The square root of a number produces two solutions, e.g. $\sqrt{16}=\pm 4$.

Examples

Example 1 Evaluate 10⁰

$10^0 = 1$	Any value raised to the power of zero is
	equal to 1

Example 2 Evaluate $9^{\frac{1}{2}}$

1	1
$9^{\frac{1}{2}} = \sqrt{9}$	Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$
= 3	

Example 3 Evaluate $27^{\frac{2}{3}}$

$$27^{\frac{2}{3}} = (\sqrt[3]{27})^{2}$$
= 3²
= 9

1 Use the rule $a^{\frac{m}{n}} = (\sqrt[n]{a})^{m}$
2 Use $\sqrt[3]{27} = 3$

Example 4 Evaluate 4^{-2}

$4^{-2} = \frac{1}{4^2}$	1 Use the rule $a^{-m} = \frac{1}{a^m}$
$=\frac{1}{16}$	2 Use $4^2 = 16$

Example 5 Simplify $\frac{6x^5}{2x^2}$

$\frac{6x^5}{2x^2} = 3x^3$	$6 \div 2 = 3$ and use the rule $\frac{a^m}{a^n} = a^{m-n}$ to
	give $\frac{x^5}{x^2} = x^{5-2} = x^3$

Example 6 Simplify $\frac{x^3 \times x^5}{x^4}$

$\frac{x^3 \times x^5}{x^4} = \frac{x^{3+5}}{x^4} = \frac{x^8}{x^4}$	1 Use the rule $a^m \times a^n = a^{m+n}$
$=x^{8-4}=x^4$	2 Use the rule $\frac{a^m}{a^n} = a^{m-n}$

Example 7 Write $\frac{1}{3x}$ as a single power of x

$\frac{1}{3x} = \frac{1}{3}x^{-1}$	Use the rule $\frac{1}{a^m} = a^{-m}$, note that the
	fraction $\frac{1}{3}$ remains unchanged

Example 8 Write $\frac{4}{\sqrt{x}}$ as a single power of x

$\frac{4}{\sqrt{x}} = \frac{4}{x^{\frac{1}{2}}}$	1 Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$
$=4x^{-\frac{1}{2}}$	2 Use the rule $\frac{1}{a^m} = a^{-m}$

Factorising expressions

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Factorising an expression is the opposite of expanding the brackets.
- A quadratic expression is in the form $ax^2 + bx + c$, where $a \ne 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose product is ac.
- An expression in the form $x^2 y^2$ is called the difference of two squares. It factorises to (x y)(x + y).

Examples

Example 1 Factorise $15x^2y^3 + 9x^4y$

$15x^2y^3 + 9x^4y = 3x^2y(5y^2 + 3x^2)$	The highest common factor is $3x^2y$. So take $3x^2y$ outside the brackets and then divide each term by $3x^2y$ to find the terms in the brackets

Example 2 Factorise $4x^2 - 25y^2$

$4x^2 - 25y^2 = (2x + 5y)(2x - 5y)$	This is the difference of two squares as the two terms can be written as $(2x)^2$ and $(5y)^2$
-------------------------------------	--

Example 3 Factorise $x^2 + 3x - 10$

b = 3, ac = -10	1 Work out the two factors of $ac = -10$ which add to give $b = 3$
So $x^2 + 3x - 10 = x^2 + 5x - 2x - 10$	(5 and -2) 2 Rewrite the <i>b</i> term (3 <i>x</i>) using these two factors
= x(x+5) - 2(x+5)	3 Factorise the first two terms and the last two terms
=(x+5)(x-2)	4 $(x+5)$ is a factor of both terms

Example 4 Factorise $6x^2 - 11x - 10$

$$b = -11, ac = -60$$
So
$$6x^{2} - 11x - 10 = 6x^{2} - 15x + 4x - 10$$

$$= 3x(2x - 5) + 2(2x - 5)$$

$$= (2x - 5)(3x + 2)$$

- 1 Work out the two factors of ac = -60 which add to give b = -11 (-15 and 4)
- 2 Rewrite the *b* term (-11x) using these two factors
- **3** Factorise the first two terms and the last two terms
- 4 (2x-5) is a factor of both terms

Example 5 Simplify $\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$

$$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$$

For the numerator:

$$b = -4$$
, $ac = -21$

So

$$x^2 - 4x - 21 = x^2 - 7x + 3x - 21$$

 $= x(x - 7) + 3(x - 7)$
 $= (x - 7)(x + 3)$

For the denominator:

$$b = 9$$
, $ac = 18$

$$= 2x(x+3) + 3(x+3)$$

$$= (x+3)(2x+3)$$
So
$$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9} = \frac{(x-7)(x+3)}{(x+3)(2x+3)}$$

 $2x^2 + 9x + 9 = 2x^2 + 6x + 3x + 9$

- 1 Factorise the numerator and the denominator
- 2 Work out the two factors of ac = -21 which add to give b = -4 (-7 and 3)
- 3 Rewrite the *b* term (-4x) using these two factors
- 4 Factorise the first two terms and the last two terms
- 5 (x-7) is a factor of both terms
- 6 Work out the two factors of ac = 18 which add to give b = 9 (6 and 3)
- 7 Rewrite the b term (9x) using these two factors
- **8** Factorise the first two terms and the last two terms
- 9 (x+3) is a factor of both terms
- 10 (x + 3) is a factor of both the numerator and denominator so cancels out as a value divided by itself is 1

Completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Completing the square for a quadratic rearranges $ax^2 + bx + c$ into the form $p(x + q)^2 + r$
- If $a \ne 1$, then factorise using a as a common factor.

Examples

Example 1 Complete the square for the quadratic expression $x^2 + 6x - 2$

$$x^{2} + 6x - 2$$

$$= (x + 3)^{2} - 9 - 2$$

$$= (x + 3)^{2} - 11$$
1 Write $x^{2} + bx + c$ in the form
$$\left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} + c$$
2 Simplify

Example 2 Write $2x^2 - 5x + 1$ in the form $p(x+q)^2 + r$

$$2x^{2} - 5x + 1$$

$$= 2\left(x^{2} - \frac{5}{2}x\right) + 1$$

$$= 2\left[\left(x - \frac{5}{4}\right)^{2} - \left(\frac{5}{4}\right)^{2}\right] + 1$$

$$= 2\left[\left(x - \frac{5}{4}\right)^{2} - \frac{25}{8} + 1\right]$$
3 Expand the square brackets – don't forget to multiply $\left(\frac{5}{4}\right)^{2}$ by the factor of 2
$$= 2\left(x - \frac{5}{4}\right)^{2} - \frac{17}{8}$$
4 Simplify

Solving quadratic equations by factorisation

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $ax^2 + bx + c = 0$ where $a \ne 0$.
- To factorise a quadratic equation find two numbers whose sum is *b* and whose products is
- When the product of two numbers is 0, then at least one of the numbers must be 0.
- If a quadratic can be solved it will have two solutions (these may be equal).

Examples

Example 1 Solve $5x^2 = 15x$

15%	
$5x^2 = 15x$	1 Rearrange the equation so that all of
$5x^2 - 15x = 0$	the terms are on one side of the equation and it is equal to zero.
	Do not divide both sides by x as this would lose the solution $x = 0$.
5x(x-3)=0	2 Factorise the quadratic equation. 5x is a common factor.
So $5x = 0$ or $(x - 3) = 0$	3 When two values multiply to make zero, at least one of the values must
	be zero.
Therefore $x = 0$ or $x = 3$	4 Solve these two equations.

Example 2 Solve $x^2 + 7x + 12 = 0$

$x^2 + 7x + 12 = 0$	1 Factorise the quadratic equation.
b = 7, $ac = 12$	Work out the two factors of $ac = 12$ which add to give you $b = 7$. (4 and 3)
$x^2 + 4x + 3x + 12 = 0$	2 Rewrite the <i>b</i> term (7 <i>x</i>) using these two factors.
x(x+4) + 3(x+4) = 0	3 Factorise the first two terms and the last two terms.
(x+4)(x+3)=0	4 $(x + 4)$ is a factor of both terms.
So $(x+4) = 0$ or $(x+3) = 0$	5 When two values multiply to make zero, at least one of the values must be zero.
Therefore $x = -4$ or $x = -3$	6 Solve these two equations.

Example 3 Solve $9x^2 - 16 = 0$

$$9x^{2} - 16 = 0$$

$$(3x + 4)(3x - 4) = 0$$
So $(3x + 4) = 0$ or $(3x - 4) = 0$

$$x = -\frac{4}{3} \text{ or } x = \frac{4}{3}$$

- 1 Factorise the quadratic equation. This is the difference of two squares as the two terms are $(3x)^2$ and $(4)^2$.
- 2 When two values multiply to make zero, at least one of the values must be zero.
- 3 Solve these two equations.

Example 4 Solve $2x^2 - 5x - 12 = 0$

$$b = -5, ac = -24$$
So $2x^2 - 8x + 3x - 12 = 0$

$$2x(x - 4) + 3(x - 4) = 0$$

$$(x - 4)(2x + 3) = 0$$
So $(x - 4) = 0$ or $(2x + 3) = 0$

$$x = 4 \text{ or } x = -\frac{3}{2}$$

- 1 Factorise the quadratic equation. Work out the two factors of ac = -24 which add to give you b = -5. (-8 and 3)
- 2 Rewrite the *b* term (-5x) using these two factors.
- **3** Factorise the first two terms and the last two terms.
- 4 (x-4) is a factor of both terms.
- 5 When two values multiply to make zero, at least one of the values must be zero.
- 6 Solve these two equations.

Solving quadratic equations by completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

• Completing the square lets you write a quadratic equation in the form $p(x+q)^2 + r = 0$.

Examples

Example 5 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$$x^2 + 6x + 4 = 0$$

$$(x+3)^2 - 9 + 4 = 0$$

$$(x+3)^2 - 5 = 0$$
$$(x+3)^2 = 5$$

$$(x+3)^2 = 5$$

$$x + 3 = \pm \sqrt{5}$$

$$x = \pm \sqrt{5} - 3$$

So
$$x = -\sqrt{5} - 3$$
 or $x = \sqrt{5} - 3$

1 Write $x^2 + bx + c = 0$ in the form

$$\left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c = 0$$

- 2 Simplify.
- 3 Rearrange the equation to work out x. First, add 5 to both sides.
- 4 Square root both sides. Remember that the square root of a value gives two answers.
- Subtract 3 from both sides to solve the equation.
- Write down both solutions.

Solve $2x^2 - 7x + 4 = 0$. Give your solutions in surd form. Example 6

$$2x^2 - 7x + 4 = 0$$

$$2\left(x^2 - \frac{7}{2}x\right) + 4 = 0$$

$$2\left[\left(x - \frac{7}{4}\right)^2 - \left(\frac{7}{4}\right)^2\right] + 4 = 0$$

$$2\left(x-\frac{7}{4}\right)^2-\frac{49}{8}+4=0$$

$$2\left(x - \frac{7}{4}\right)^2 - \frac{17}{8} = 0$$

$$2\left(x - \frac{7}{4}\right)^2 = \frac{17}{8}$$

$$\left(x - \frac{7}{4}\right)^2 = \frac{17}{16}$$

$$x - \frac{7}{4} = \pm \frac{\sqrt{17}}{4}$$

$$x = \pm \frac{\sqrt{17}}{4} + \frac{7}{4}$$

So
$$x = \frac{7}{4} - \frac{\sqrt{17}}{4}$$
 or $x = \frac{7}{4} + \frac{\sqrt{17}}{4}$

1 Before completing the square write $ax^2 + bx + c$ in the form

$$a\left(x^2 + \frac{b}{a}x\right) + c$$

2 Now complete the square by writing $x^2 - \frac{7}{2}x$ in the form

$$\left(x+\frac{b}{2a}\right)^2-\left(\frac{b}{2a}\right)^2$$

- Expand the square brackets.
- Simplify.

(continued on next page)

- 5 Rearrange the equation to work out x. First, add $\frac{17}{8}$ to both sides.
- 6 Divide both sides by 2.
- Square root both sides. Remember that the square root of a value gives two answers.
- 8 Add $\frac{7}{4}$ to both sides.
- Write down both the solutions.

Solving quadratic equations by using the formula

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Any quadratic equation of the form $ax^2 + bx + c = 0$ can be solved using the formula $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- If $b^2 4ac$ is negative then the quadratic equation does not have any real solutions.
- It is useful to write down the formula before substituting the values for a, b and c.

Examples

Example 7 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$$a = 1, b = 6, c = 4$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-6 \pm \sqrt{6^2 - 4(1)(4)}}{2(1)}$$

$$x = \frac{-6 \pm \sqrt{20}}{2}$$

$$x = \frac{-6 \pm 2\sqrt{5}}{2}$$

$$x = -3 \pm \sqrt{5}$$
So $x = -3 - \sqrt{5}$ or $x = \sqrt{5} - 3$

- 1 Identify a, b and c and write down the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2a, not just part of it.
- 2 Substitute a = 1, b = 6, c = 4 into the formula.
- 3 Simplify. The denominator is 2, but this is only because a = 1. The denominator will not always be 2.
- 4 Simplify $\sqrt{20}$. $\sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$
- 5 Simplify by dividing numerator and denominator by 2.
- **6** Write down both the solutions.

Example 8 Solve $3x^2 - 7x - 2 = 0$. Give your solutions in surd form.

$$a = 3, b = -7, c = -2$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(3)(-2)}}{2(3)}$$

$$x = \frac{7 \pm \sqrt{73}}{6}$$
So $x = \frac{7 - \sqrt{73}}{6}$ or $x = \frac{7 + \sqrt{73}}{6}$

- 1 Identify *a*, *b* and *c*, making sure you get the signs right and write down the formula.
 - Remember that $-b \pm \sqrt{b^2 4ac}$ is all over 2a, not just part of it.
- 2 Substitute a = 3, b = -7, c = -2 into the formula.
- 3 Simplify. The denominator is 6 when a = 3. A common mistake is to always write a denominator of 2.
- 4 Write down both the solutions.

Solving linear simultaneous equations using the elimination method

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous

Key points

- Two equations are simultaneous when they are both true at the same time.
- Solving simultaneous linear equations in two unknowns involves finding the value of each unknown which works for both equations.
- Make sure that the coefficient of one of the unknowns is the same in both equations.
- Eliminate this equal unknown by either subtracting or adding the two equations.

Examples

Example 1 Solve the simultaneous equations 3x + y = 5 and x + y = 1

3x + y = 5 $- x + y = 1$ $2x = 4$
So $x = 2$
Using $x + y = 1$ 2 + y = 1 So $y = -1$
Check: equation 1: $3 \times 2 + (-1) = 5$ YES equation 2: $2 + (-1) = 1$ YES

- 1 Subtract the second equation from the first equation to eliminate the *y* term.
- 2 To find the value of y, substitute x = 2 into one of the original equations.
- 3 Substitute the values of x and y into both equations to check your answers.

Example 2 Solve x + 2y = 13 and 5x - 2y = 5 simultaneously.

$$x + 2y = 13$$

$$+ 5x - 2y = 5$$

$$6x = 18$$
So $x = 3$
Using $x + 2y = 13$

$$3 + 2y = 13$$
So $y = 5$
Check:

equation 1: $3 + 2 \times 5 = 13$

equation 2: $5 \times 3 - 2 \times 5 = 5$ YES

YES

- 1 Add the two equations together to eliminate the *y* term.
- 2 To find the value of y, substitute x = 3 into one of the original equations.
- 3 Substitute the values of *x* and *y* into both equations to check your answers.

Example 3 Solve 2x + 3y = 2 and 5x + 4y = 12 simultaneously.

$$(2x + 3y = 2) \times 4 \rightarrow 8x + 12y = 8$$

 $(5x + 4y = 12) \times 3 \rightarrow 15x + 12y = 36$
 $7x = 28$

So
$$x = 4$$

Using
$$2x + 3y = 2$$

 $2 \times 4 + 3y = 2$
So $y = -2$

Check:

equation 1:
$$2 \times 4 + 3 \times (-2) = 2$$
 YES equation 2: $5 \times 4 + 4 \times (-2) = 12$ YES

- 1 Multiply the first equation by 4 and the second equation by 3 to make the coefficient of *y* the same for both equations. Then subtract the first equation from the second equation to eliminate the *y* term.
- 2 To find the value of y, substitute x = 4 into one of the original equations.
- 3 Substitute the values of x and y into both equations to check your answers.

Solving linear simultaneous equations using the substitution method

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous **Textbook:** Pure Year 1, 3.1 Linear simultaneous equations

Key points

• The substitution method is the method most commonly used for A level. This is because it is the method used to solve linear and quadratic simultaneous equations.

Examples

Example 4 Solve the simultaneous equations y = 2x + 1 and 5x + 3y = 14

$$5x + 3(2x + 1) = 14$$

$$5x + 6x + 3 = 14$$
$$11x + 3 = 14$$

$$11x = 11$$

So
$$x = 1$$

Using
$$y = 2x + 1$$

 $y = 2 \times 1 + 1$

So
$$y = 3$$

Check:

equation 1:
$$3 = 2 \times 1 + 1$$
 YES
equation 2: $5 \times 1 + 3 \times 3 = 14$ YES

- 1 Substitute 2x + 1 for y into the second equation.
- 2 Expand the brackets and simplify.
- 3 Work out the value of x.
- 4 To find the value of y, substitute x = 1 into one of the original equations.
- 5 Substitute the values of x and y into both equations to check your answers.

Example 5 Solve 2x - y = 16 and 4x + 3y = -3 simultaneously.

$$y = 2x - 16$$
$$4x + 3(2x - 16) = -3$$

$$4x + 6x - 48 = -3$$

$$10x - 48 = -3$$

$$10x = 45$$

So
$$x = 4\frac{1}{2}$$

Using
$$y = 2x - 16$$

 $y = 2 \times 4\frac{1}{2} - 16$

So
$$y = -7$$

Check:

equation 1:
$$2 \times 4\frac{1}{2} - (-7) = 16$$
 YES

equation 2:
$$4 \times 4\frac{1}{2} + 3 \times (-7) = -3$$
 YES

- 1 Rearrange the first equation.
- 2 Substitute 2x 16 for y into the second equation.
- 3 Expand the brackets and simplify.
- 4 Work out the value of x.
- 5 To find the value of y, substitute $x = 4\frac{1}{2}$ into one of the original equations.
- 6 Substitute the values of x and y into both equations to check your answers.

Linear inequalities

A LEVEL LINKS

Scheme of work: 1d. Inequalities – linear and quadratic (including graphical solutions)

Key points

- Solving linear inequalities uses similar methods to those for solving linear equations.
- When you multiply or divide an inequality by a negative number you need to reverse the inequality sign, e.g. < becomes >.

Examples

Example 1 Solve $-8 \le 4x < 16$

$-8 \le 4x < 16$	Divide all three terms by 4.		
$-2 \le x < 4$			

Example 2 Solve $4 \le 5x < 10$

$4 \le 5x < 10$	Divide all three terms by 5.
$\frac{4}{5} \le x < 2$	

Example 3 Solve 2x - 5 < 7

	 Add 5 to both sides. Divide both sides by 2.
<i>x</i> < 6	

Example 4 Solve $2 - 5x \ge -8$

Example 5 Solve 4(x-2) > 3(9-x)

4x - 8 > 27 - 3x	 Expand the brackets. Add 3x to both sides. Add 8 to both sides. Divide both sides by 7.
x > 5	•

Straight line graphs

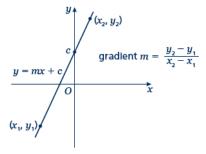
A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- A straight line has the equation y = mx + c, where m is the gradient and c is the y-intercept (where x = 0).
- The equation of a straight line can be written in the form ax + by + c = 0, where a, b and c are integers.
- When given the coordinates (x_1, y_1) and (x_2, y_2) of two points on a line the gradient is calculated using the

formula
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$



Examples

Example 1 A straight line has gradient $-\frac{1}{2}$ and y-intercept 3.

Write the equation of the line in the form ax + by + c = 0.

$$m = -\frac{1}{2} \text{ and } c = 3$$
So $y = -\frac{1}{2}x + 3$

$$\frac{1}{2}x + y - 3 = 0$$

$$x + 2y - 6 = 0$$

- 1 A straight line has equation y = mx + c. Substitute the gradient and y-intercept given in the question into this equation.
- 2 Rearrange the equation so all the terms are on one side and 0 is on the other side.
- **3** Multiply both sides by 2 to eliminate the denominator.

Example 2 Find the gradient and the y-intercept of the line with the equation 3y - 2x + 4 = 0.

$$3y - 2x + 4 = 3y = 2x - 4$$
$$y = \frac{2}{3}x - \frac{4}{3}$$

Gradient =
$$m = \frac{2}{3}$$

y-intercept =
$$c = -\frac{4}{3}$$

- 1 Make y the subject of the equation.
- 2 Divide all the terms by three to get the equation in the form y = ...
- 3 In the form y = mx + c, the gradient is m and the y-intercept is c.

Example 3 Find the equation of the line which passes through the point (5, 13) and has gradient 3.

$$m = 3$$

 $y = 3x + c$

1 Substitute the gradient given in the question into the equation of a straight line $y = mx + c$.

2 Substitute the coordinates $x = 5$ and $y = 13$ into the equation.

3 Simplify and solve the equation.

4 Substitute $c = -2$ into the equation $y = 3x + c$

Example 4 Find the equation of the line passing through the points with coordinates (2, 4) and (8, 7).

$x_1 = 2$, $x_2 = 8$, $y_1 = 4$ and $y_2 = 7$	1 Substitute the coordinates into the		
$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 4}{8 - 2} = \frac{3}{6} = \frac{1}{2}$	equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out		
	the gradient of the line.		
$y = \frac{1}{2}x + c$	2 Substitute the gradient into the equation of a straight line		
2	y = mx + c.		
$4 = \frac{1}{2} \times 2 + c$	3 Substitute the coordinates of either point into the equation.		
c=3	4 Simplify and solve the equation.		
$y = \frac{1}{2}x + 3$	5 Substitute $c = 3$ into the equation		
2	$y = \frac{1}{2}x + c$		

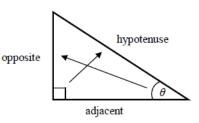
Trigonometry in right-angled triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Key points

- In a right-angled triangle:
 - o the side opposite the right angle is called the hypotenuse
 - o the side opposite the angle ϑ is called the opposite
 - \circ the side next to the angle ϑ is called the adjacent.



- In a right-angled triangle:
 - the ratio of the opposite side to the hypotenuse is the sine of angle ϑ , $\sin \theta = \frac{\text{opp}}{\text{hyp}}$
 - \circ the ratio of the adjacent side to the hypotenuse is the cosine of angle ϑ , $\cos\theta = \frac{\text{adj}}{\text{hyp}}$
 - the ratio of the opposite side to the adjacent side is the tangent of angle ϑ , $\tan \theta = \frac{\text{opp}}{\text{adj}}$
- If the lengths of two sides of a right-angled triangle are given, you can find a missing angle using the inverse trigonometric functions: sin⁻¹, cos⁻¹, tan⁻¹.
- The sine, cosine and tangent of some angles may be written exactly.

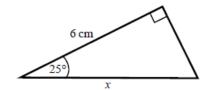
	0	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

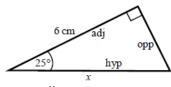
Examples

Example 1

Calculate the length of side x.

Give your answer correct to 3 significant figures.





$$\cos \theta = \frac{\text{adj}}{\text{hyp}}$$

$$\cos 25^\circ = \frac{6}{x}$$

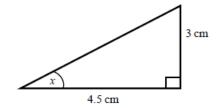
$$x = \frac{6}{\cos 25^{\circ}}$$

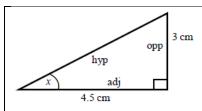
$$x = 6.620 \ 267 \ 5...$$

$$x = 6.62 \text{ cm}$$

- 1 Always start by labelling the sides.
- 2 You are given the adjacent and the hypotenuse so use the cosine ratio.
- 3 Substitute the sides and angle into the cosine ratio.
- 4 Rearrange to make *x* the subject.
- 5 Use your calculator to work out $6 \div \cos 25^{\circ}$.
- 6 Round your answer to 3 significant figures and write the units in your answer.

Example 2 Calculate the size of angle *x*. Give your answer correct to 3 significant figures.





$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$

$$\tan x = \frac{3}{4.5}$$

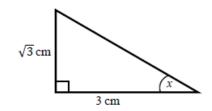
$$x = \tan^{-1}\left(\frac{3}{4.5}\right)$$

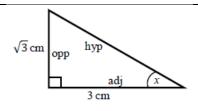
x = 33.6900675...

$$x = 33.7^{\circ}$$

1 Always start by labelling the sides.

- 2 You are given the opposite and the adjacent so use the tangent ratio.
- 3 Substitute the sides and angle into the tangent ratio.
- 4 Use tan⁻¹ to find the angle.
- 5 Use your calculator to work out $tan^{-1}(3 \div 4.5)$.
- 6 Round your answer to 3 significant figures and write the units in your answer.





 $\tan \theta = \frac{\text{opp}}{\text{adj}}$

$$\tan x = \frac{\sqrt{3}}{3}$$

$$x = 30^{\circ}$$

1 Always start by labelling the sides.

- 2 You are given the opposite and the adjacent so use the tangent ratio.
- 3 Substitute the sides and angle into the tangent ratio.
- 4 Use the table from the key points to find the angle.

The cosine rule

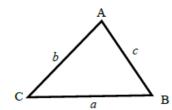
A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Textbook: Pure Year 1, 9.1 The cosine rule

Key points

a is the side opposite angle A.
 b is the side opposite angle B.
 c is the side opposite angle C.



- You can use the cosine rule to find the length of a side when two sides and the included angle are given.
- To calculate an unknown side use the formula $a^2 = b^2 + c^2 2bc \cos A$.
- Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given.
- To calculate an unknown angle use the formula $\cos A = \frac{b^2 + c^2 a^2}{2bc}$.

Examples

Example 4 Work out the length of side w. Give your answer correct to 3 significant figures.

7 cm Y Z

7 cm B W A 45° b A 8 cm

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$w^2 = 8^2 + 7^2 - 2 \times 8 \times 7 \times \cos 45^\circ$$

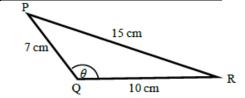
$$w^2 = 33.80404051...$$

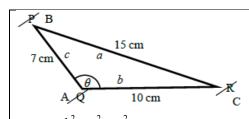
$$w = \sqrt{33.80404051}$$

$$w = 5.81 \text{ cm}$$

- 1 Always start by labelling the angles and sides.
- 2 Write the cosine rule to find the side.
- **3** Substitute the values *a*, *b* and *A* into the formula.
- 4 Use a calculator to find w^2 and then w.
- 5 Round your final answer to 3 significant figures and write the units in your answer.

Example 5 Work out the size of angle θ . Give your answer correct to 1 decimal place.





$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$10^2 + 7^2 - 15^2$$

$$\cos \theta = \frac{10^2 + 7^2 - 15^2}{2 \times 10 \times 7}$$

$$\cos\theta = \frac{-76}{140}$$

$$\theta$$
 = 122.878 349...

$$\theta = 122.9^{\circ}$$

- 1 Always start by labelling the angles and sides.
- 2 Write the cosine rule to find the angle.
- 3 Substitute the values a, b and c into the formula.
- 4 Use \cos^{-1} to find the angle.
- 5 Use your calculator to work out $\cos^{-1}(-76 \div 140)$.
- 6 Round your answer to 1 decimal place and write the units in your answer.

The sine rule

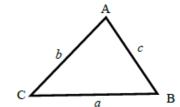
A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Textbook: Pure Year 1, 9.2 The sine rule

Key points

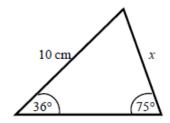
a is the side opposite angle A.
 b is the side opposite angle B.
 c is the side opposite angle C.

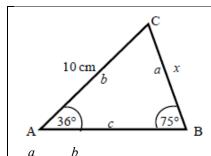


- You can use the sine rule to find the length of a side when its opposite angle and another opposite side and angle are given.
- To calculate an unknown side use the formula $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.
- Alternatively, you can use the sine rule to find an unknown angle if the opposite side and another opposite side and angle are given.
- To calculate an unknown angle use the formula $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.

Examples

Example 6 Work out the length of side *x*. Give your answer correct to 3 significant figures.





$$\frac{\sin A}{\sin 36^{\circ}} = \frac{10}{\sin 75^{\circ}}$$

$$x = \frac{10 \times \sin 36^{\circ}}{\sin 75^{\circ}}$$

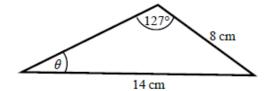
$$x = 6.09 \text{ cm}$$

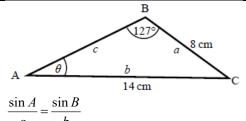
1 Always start by labelling the angles and sides.

2 Write the sine rule to find the side.

- 3 Substitute the values a, b, A and B into the formula.
- 4 Rearrange to make *x* the subject.
- 5 Round your answer to 3 significant figures and write the units in your answer.

Example 7 Work out the size of angle θ . Give your answer correct to 1 decimal place.





$$\frac{a}{a} = \frac{b}{b}$$

$$\frac{\sin \theta}{8} = \frac{\sin 127^{\circ}}{14}$$

$$\sin \theta = \frac{8 \times \sin 127^{\circ}}{14}$$

$$\theta = 27.2^{\circ}$$

- 1 Always start by labelling the angles and sides.
- 2 Write the sine rule to find the angle.
- 3 Substitute the values a, b, A and B into the formula.
- 4 Rearrange to make $\sin \theta$ the subject.
- 5 Use sin⁻¹ to find the angle. Round your answer to 1 decimal place and write the units in your answer.

Areas of triangles

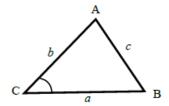
A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Textbook: Pure Year 1, 9.3 Areas of triangles

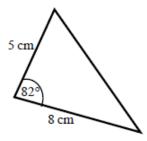
Key points

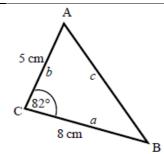
- a is the side opposite angle A.
 b is the side opposite angle B.
 c is the side opposite angle C.
- The area of the triangle is $\frac{1}{2}ab\sin C$.



Examples

Example 8 Find the area of the triangle.





Area =
$$\frac{1}{2}ab\sin C$$

Area =
$$\frac{1}{2} \times 8 \times 5 \times \sin 82^{\circ}$$

Area = 19.805 361...

Area =
$$19.8 \text{ cm}^2$$

1 Always start by labelling the sides and angles of the triangle.

- 2 State the formula for the area of a triangle.
- 3 Substitute the values of a, b and C into the formula for the area of a triangle.
- 4 Use a calculator to find the area.
- 5 Round your answer to 3 significant figures and write the units in your answer.