
Algorithms

An algorithm is a sequence of ordered instructions that are followed
step-by-step to solve a problem. This does not need to be on a
computer.

Decomposition is the breaking down of a complex problem into
smaller more manageable problems that are easier to solve.

Abstraction allows us to remove unnecessary detail from a problem
leaving us with only the relevant parts of a problem thereby making
it easier to solve.

Algorithm Efficiency More than one algorithm can be used to solve
the same problem. Normally we use the algorithm that solves the
problem in the quickest time with the fewest operations or makes
use of the least amount of memory.

Dry run testing is carried out using trace tables. The purpose of the
trace tables is for the programmer to track the value of the variables
and outputs at each step of the program and to track how they
change throughout the running of the program.

Flowchart Symbols
We can represent algorithms using flowcharts

Start and Stop

Process – An operation that the
algorithm performs

Connector – Links all the other
symbols together

Input and Output of data that is
read in and written out

Decision is the same as a selection
(if then … else)

IF answer is “yes” THEN

 do something

ELSE IF answer is “no”

 do something else

ENDIF

Pseudocode

We can represent algorithms using pseudocode

 Example Python equivalent

Variable assignment

a  10 a = 10

Constant assignment

constant PI  3.142 PI = 3.142

Input a  USERINPUT a = input()

Output OUTPUT “Bye” print(“Bye”)

Arithmetic Operators

Add
Multiply
Divide
Subtract
Integer division
Modulus (remainder)

+

*

/

-

a  7 DIV 2

a  7 MOD 2

+

*

/

-

a= 7 // 2

a = 7 % 2

Relational Operators

Less than

Greater than

Equal to

Not equal to

Less than or equal to

Greater than or equal
to

<

>

=

≠ or <>

≤

≥

<

>

==

!=

<=

>=

Boolean Operators

AND
OR
NOT

AND

OR

NOT

AND

OR

NOT

Selection

if ..

if .. else …

if ... else if … else

IF i > 2 THEN

 j  10

ENDIF

IF i > 2 THEN

 j  10

ELSE

 j  3

ENDIF

IF i ==2 THEN

 j  10

ELSE IF i==3

THEN

if i > 2:

 j=10

if i > 2:

 j=10

else:

 j=3

if i ==2:

 j=10

elif i==3:

 j=3

 j  3

ELSE

 j  1

ENDIF

else:

 j=1

Iteration

While loops

For loops

Repeat loops

a ← 1

WHILE a < 4

 OUTPUT a

 a ← a + 1

ENDWHILE

FOR a ← 0 TO 3

 OUTPUT a

ENDFOR

a ← 1

REPEAT

 OUTPUT a

 a ← a + 1

UNTIL a←4

while a<4:

 print(a)

 a=a+1

for a in

range(3):

 print(a)

Subroutines

procedure

Function (with
paramerters and
return)

SUB hello()

 OUTPUT “hello”

ENDSUB

SUB add(n)

 a ← 0

 FOR a ← 0 TO n

 a ← a + n

 ENDFOR

 RETURN a

ENDSUB

def hello():

 print(“hello”)

def add(n):

 a=0

 for a in

range(n+1):

 a=a+n

 return a

Built-in functions

Length of array

Random integer

LEN(a)

RANDOM_INT(0, 9)

len(a)

import random

random.randint(0,9)

Process
Start Stop

Input/Output

Decision Do something

Do something

else

Yes

No

Searching Algorithms

Linear Search Algorithm

• The purpose of the linear search algorithm is to find a target item

within a list.
• Compares each list item one-by-one against the target until the

match has been found and returns the position of the item in the
list.

• If all items have been checked and the search item is not in the
list then the program will run through to the end of the list and
return a suitable message indicating that the item is not in the
list.

• The algorithm runs in linear time. If n is the length of the list,
then at worst the algorithm will make n comparisons. At best it
will make 1 comparison and on average it will make (n+1)/2
comparisons.

• The performance of the algorithm will be improved if the target
item is near the start of the list.

Example
Find the position of letter “Z” within the following list. Assume we do
not have visibility of the list

Index
position

0 1 2 3 4 5 6 7

Value V A S Z X R T G

We compare it with the value in index position 0. We find that the
value is ”V” so we need to move on to the next index position. At
index position 1 and 2 we still have not found Z. However, we get to
index position 3 and we compare the target with the value and we
find that they match, so the algorithm returns the index position and
stops.

Pseudocode
 i ← 0

 x ← len(listOfItems)

 pos ← -1

 found ← False

 WHILE i < x AND NOT found

 IF listOfItems[i] == itemSearch THEN

 found ← True

 pos ← i + 1

 ENDIF

 i=i+1

 ENDWHILE

 OUTPUT pos

Binary Search Algorithm

• The binary search algorithm works on a sorted list by identifying

the middle value in the list and comparing it with the search
item.

• If the search item is smaller the mid element becomes the new
high value for the search area.

• If the search item is larger the mid element becomes the low
value for the search area.

• The keeps repeating until the search item is found.
• When the search item is found the index position of the item is

returned.
• At each iteration the search are halved in size consequently this

is an efficient algorithm.

Example: Binary search in operation to find 81

Pseudocode

low ← 1

high ← LENGTH(arr)

mid ← (low + high) DIV 2

WHILE val ≠ arr[mid]

 IF arr[mid] < val THEN

 low ← mid

 ELIF arr[mid] > val THEN

 high ← mid

 ENDIF

 mid ← (low + high) DIV 2

 ENDWHILE

OUTPUT mid

Linear search versus binary search

 Advantages Disadvantages

Linear
Search

• Very simple
algorithm and easy
to implement

• No sorting required
• Good for short lists

• slow because it
searchers through the
whole list

• very inefficient for long
lists

Binary
Search

• much quicker than
linear search,
because it halves the
search zone each
step

• The list need to be
ordered

Sorting Algorithms

Bubble Sort

• The purpose of sorting algorithms is to order an unordered list.

Item can be ordered alphabetically or by number.
• Bubble sort steps through a list and compares pairs of adjacent

numbers. The numbers are swapped if they are in the wrong
order. For an ascending list if the left number is bigger than the
right number the items are swapped otherwise the numbers are
not swapped.

• The algorithm repeatedly passes through the list until no more
swaps are needed.

Example

Sort the following sequence in ascending order using bubble sort:
5,3,4,1,2.

Pass
1

5 3 4 1 2

3 5 4 1 2 Compare 5 and 3 – swap

3 4 5 1 2 Compare 5 and 4 – swap

3 4 1 5 2 Compare 5 and 1 – swap

3 4 1 2 5 Compare 5 and 2 – swap; end of
pass 1

Pass
2

3 4 1 2 5 Compare 3 and 4 – no swap

3 1 4 2 5 Compare 4 and 1 – swap

3 1 2 4 5 Compare 4 and 2 – swap

3 1 2 4 5 Compare 4 and 5 – no swap; end
of pass 2

Pass
3

1 3 2 4 5 Compare 3 and 1 – swap

1 2 3 4 5 Compare 3 and 2 – swap

1 2 3 4 5 Compare 3 and 4 – no swap

1 2 3 4 5 Compare 4 and 5 – no swap; end
of pass 3

1 2 3 4 5

Bubble sort Pseudocode

A=[5,3,4,1,2]

sorted ← False

WHILE not sorted

 sorted ← True

 FOR I TO LEN(A)-1:

 IF A[i] > A[i+1]:

 temp ← A[i]

 A[i] ← A[i+1]

 A[i+1] ← temp

 sorted ← False

 ENDIF

 ENDFOR

ENDWHILE

OUTPUT A

Merge Sort

• Merge sort is a type of divide and conquer algorithm.
• There are two steps: divide and combine
• Merge sort works by dividing the unsorted list sublists. It

keeps on doing this until there is 1 item in each list.
• Pairs of sublists are combined into an ordered list containing

all items in the two sublists. The algorithm keeps going until
there is only 1 ordered list remaining.

• Merge sort is a recursive function, that calls itself.

Step 1: Divide

Keep dividing until there is only 1 item in each list

Step2: Combine

1. The first items in the two sublists are compared, and the
smallest value is copied to the parent list.

2. The copied item is then removed from the sublist.
3. When there are no items left in one of the sublists the

remaining items in the other sublist are them copied in order
to the parent list.

Merge sort Versus Bubble sort

 Advantages Disadvantages

Bubble
sort

Very simple and robust
algorithm

Can be slow particularly for
long lists. As the number of
items increases the time taken
for the algorithm to run
increases dramatically.

Merge
sort

Much faster than
bubble sort especially
when the number of
elements is large

More complex to understand
Step 1: Divide
Step 2: Combine

