GETTING READY FOR A-LEVEL MATHEMATICS:

Practice Questions:

10 Bridging Topics to prepare you for A level Maths:

- 1. Expanding brackets and simplifying expressions
- 2. Rearranging equations
- 3. Rules of indices
- 4. Factorising expressions
- 5. Completing the square
- 6. Solving quadratic equations
- 7. Solving linear simultaneous equations
- 8. Linear inequalities
- 9. Straight line graphs
- 10. Trigonometry

Expanding brackets & simplifying expressions

1	F			
1	Expand. $2(2, 1)$	L	2(5	Watch out!
	a $3(2x-1)$	D	$-2(5pq+4q^2)$	When multiplying (or
	c $-(3xy-2y^2)$			When multiplying (or dividing) positive and
2	Expand and simplify.			negative numbers, if
	a $7(3x+5)+6(2x-8)$	b	8(5p-2) - 3(4p+9)	the signs are the same
	c $9(3s+1)-5(6s-10)$	d	2(4x-3) - (3x+5)	the answer is '+'; if the
				signs are different the
3	Expand.			answor is '_'
	a $3x(4x+8)$	b	$4k(5k^2-12)$	
	c $-2h(6h^2+11h-5)$	d	$-3s(4s^2-7s+2)$	
4	Expand and simplify.			
	a $3(y^2-8)-4(y^2-5)$	b	2x(x+5)+3x(x-7)	
	c $4p(2p-1) - 3p(5p-2)$	d	3b(4b-3) - b(6b-9)	
5	Expand $\frac{1}{2}(2y-8)$			
6	Expand and simplify.			
	a $13-2(m+7)$	b	$5p(p^2+6p)-9p(2p-3)$	
7	The diagram shows a rectangle.			·
	Write down an expression, in terms	s of x , for	r the area of $3x-5$	
	the rectangle.	h		
	Show that the area of the rectangle $21x^2 - 35x$	can be w	vritten as	
				7x
8	Expand and simplify.			
	a $(x+4)(x+5)$	b	(x+7)(x+3)	
	c $(x+7)(x-2)$	d	(x+5)(x-5)	
	e $(2x+3)(x-1)$	f	(3x-2)(2x+1)	
	g $(5x-3)(2x-5)$	h	(3x-2)(7+4x)	
	i $(3x+4y)(5y+6x)$	v	$(x+5)^2$	
	k $(2x-7)^2$	1	$(4x - 3y)^2$	
Ex	xtend			
9	Expand and simplify $(x + 3)^2 + (x - 3)^2$	- 4)²		

10 Expand and simplify.

a
$$\left(x+\frac{1}{x}\right)\left(x-\frac{2}{x}\right)$$
 b $\left(x+\frac{1}{x}\right)^2$

Rearranging equations

Change the subject of each formula to the letter given in the brackets.

- **1** $C = \pi d \ [d]$ **2** $P = 2l + 2w \ [w]$ **3** $D = \frac{S}{T} \ [T]$ **4** $p = \frac{q - r}{t} \ [t]$ **5** $u = at - \frac{1}{2}t \ [t]$ **6** $V = ax + 4x \ [x]$ **6** $v = ax + 4x \ [x]$
- 7 $\frac{y-7x}{2} = \frac{7-2y}{3}$ [y] 8 $x = \frac{2a-1}{3-a}$ [a] 9 $x = \frac{b-c}{d}$ [d] 10 $h = \frac{7g-9}{2+g}$ [g] 11 e(9+x) = 2e+1 [e] 12 $y = \frac{2x+3}{4-x}$ [x]
- 13 Make *r* the subject of the following formulae.

a
$$A = \pi r^2$$
 b $V = \frac{4}{3}\pi r^3$ **c** $P = \pi r + 2r$ **d** $V = \frac{2}{3}\pi r^2 h$

14 Make *x* the subject of the following formulae.

a
$$\frac{xy}{z} = \frac{ab}{cd}$$
 b $\frac{4\pi cx}{d} = \frac{3z}{py^2}$

15 Make sin *B* the subject of the formula $\frac{a}{\sin A} = \frac{b}{\sin B}$

16 Make $\cos B$ the subject of the formula $b^2 = a^2 + c^2 - 2ac \cos B$.

Extend

17 Make *x* the subject of the following equations.

a
$$\frac{p}{q}(sx+t) = x-1$$

b $\frac{p}{q}(ax+2y) = \frac{3p}{q^2}(x-y)$

Rules of indices

1	Evaluate. a 14 ⁰	b	3 ⁰	c	5 ⁰	d	x^0
2	Evaluate. a $49^{\frac{1}{2}}$	b	$64^{\frac{1}{3}}$	c	$125^{\frac{1}{3}}$	d	$16^{\frac{1}{4}}$
3	Evaluate. a $25^{\frac{3}{2}}$	b	$8^{\frac{5}{3}}$	c	$49^{\frac{3}{2}}$	d	$16^{\frac{3}{4}}$
4	Evaluate. a 5 ⁻²	b	4-3	c	2 ⁻⁵	d	6-2
5	Simplify. a $\frac{3x^2 \times x^3}{2x^2}$	b	$\frac{10x^5}{2x^2 \times x}$				_
	$c \qquad \frac{3x \times 2x^3}{2x^3}$ $e \qquad \frac{y^2}{y^{\frac{1}{2}} \times y}$		$\frac{7x^3y^2}{14x^5y}$ $\frac{c^{\frac{1}{2}}}{c^2 \times c^{\frac{3}{2}}}$		Watch out! Remember th any value rais the power of	ed to zero	
	$\mathbf{g} = \frac{\left(2x^2\right)^3}{4x^0}$	h	$\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^3}$		is 1. This is the rule $a^0 = 1$.	e	
6	Evaluate. a $4^{-\frac{1}{2}}$	b	$27^{-\frac{2}{3}}$	c	$9^{-\frac{1}{2}} \times 2^{3}$		

- **a** $4^{-\frac{1}{2}}$ **b** $27^{-\frac{1}{3}}$ **c** $9^{-\frac{1}{2}} \times 2^{3}$ **d** $16^{\frac{1}{4}} \times 2^{-3}$ **e** $\left(\frac{9}{16}\right)^{-\frac{1}{2}}$ **f** $\left(\frac{27}{64}\right)^{-\frac{2}{3}}$
- 7 Write the following as a single power of x. **a** $\frac{1}{x}$ **b** $\frac{1}{x^7}$ **c** $\sqrt[4]{x}$ **d** $\sqrt[5]{x^2}$ **e** $\frac{1}{\sqrt[3]{x}}$ **f** $\frac{1}{\sqrt[3]{x^2}}$

8 Write the following without negative or fractional powers.

a	x^{-3}	b x^0	c	$x^{\frac{1}{5}}$
d	$x^{\frac{2}{5}}$	e $x^{-\frac{1}{2}}$	f	$x^{-\frac{3}{4}}$

9	Wr	ite the following in the	form	ax^n .		
	a	$5\sqrt{x}$	b	$\frac{2}{x^3}$	c	$\frac{1}{3x^4}$
	d	$\frac{2}{\sqrt{x}}$	e	$\frac{4}{\sqrt[3]{x}}$	f	3

Extend

10 Write as sums of powers of x.

a
$$\frac{x^5+1}{x^2}$$
 b $x^2\left(x+\frac{1}{x}\right)$ **c** $x^{-4}\left(x^2+\frac{1}{x^3}\right)$

Factorising expressions

1	Fac	torise.		
	a	$6x^4y^3 - 10x^3y^4$	b	$21a^3b^5 + 35a^5b^2$
	c	$25x^2y^2 - 10x^3y^2 + 15x^2y^3$		
2	Fac	torise		
	a	$x^2 + 7x + 12$	b	$x^2 + 5x - 14$
	c	$x^2 - 11x + 30$	d	$x^2 - 5x - 24$
	e	$x^2 - 7x - 18$	f	$x^2 + x - 20$
	g	$x^2 - 3x - 40$	h	$x^2 + 3x - 28$
3	Fac	torise		
	a	$36x^2 - 49y^2$	b	$4x^2 - 81y^2$

Hint

Take the highest common factor outside the bracket.

4 Factorise

a	$2x^2 + x - 3$	b	$6x^2 + 17x + 5$
c	$2x^2 + 7x + 3$	d	$9x^2 - 15x + 4$
e	$10x^2 + 21x + 9$	f	$12x^2 - 38x + 20$

5 Simplify the algebraic fractions.

c $18a^2 - 200b^2c^2$

a
$$\frac{2x^2 + 4x}{x^2 - x}$$

b $\frac{x^2 + 3x}{x^2 + 2x - 3}$
c $\frac{x^2 - 2x - 8}{x^2 - 4x}$
d $\frac{x^2 - 5x}{x^2 - 25}$
e $\frac{x^2 - x - 12}{x^2 - 4x}$
f $\frac{2x^2 + 14x}{2x^2 + 4x - 70}$

a
$$\frac{9x^2 - 16}{3x^2 + 17x - 28}$$

b $\frac{2x^2 - 7x - 15}{3x^2 - 17x + 10}$
c $\frac{4 - 25x^2}{10x^2 - 11x - 6}$
d $\frac{6x^2 - x - 1}{2x^2 + 7x - 4}$

Extend

7 Simplify
$$\sqrt{x^2 + 10x + 25}$$

8 Simplify
$$\frac{(x+2)^2 + 3(x+2)^2}{x^2 - 4}$$

Completing the square

1 Write the following quadratic expressions in the form $(x + p)^2 + q$

a	$x^2 + 4x + 3$	b	$x^2 - 10x - 3$
c	$x^2 - 8x$	d	$x^2 + 6x$
e	$x^2 - 2x + 7$	f	$x^2 + 3x - 2$

2 Write the following quadratic expressions in the form $p(x+q)^2 + r$ a $2x^2 - 8x - 16$ b $4x^2 - 8x - 16$ c $3x^2 + 12x - 9$ d $2x^2 + 6x - 8$

3 Complete the square.

a	$2x^2 + 3x + 6$	b	$3x^2 - 2x$
c	$5x^2 + 3x$	d	$3x^2 + 5x + 3$

Extend

4 Write $(25x^2 + 30x + 12)$ in the form $(ax + b)^2 + c$.

Solving quadratic equations by factorisation

1 Solve a $6x^2 + 4x = 0$ b $28x^2 - 21x = 0$ c $x^2 + 7x + 10 = 0$ d $x^2 - 5x + 6 = 0$ e $x^2 - 3x - 4 = 0$ f $x^2 + 3x - 10 = 0$ h $x^2 - 36 = 0$ i $x^2 + 3x - 28 = 0$ j $x^2 - 6x + 9 = 0$ k $2x^2 - 7x - 4 = 0$ l $3x^2 - 13x - 10 = 0$

- 2 Solve
 - a $x^2 3x = 10$ b $x^2 3 = 2x$ c $x^2 + 5x = 24$ d $x^2 42 = x$ ex(x+2) = 2x + 25f $x^2 30 = 3x 2$ g $x(3x+1) = x^2 + 15$ h3x(x-1) = 2(x+1)

_	:.	-+	
п	П	ιu	

Get all terms onto one side of the

Solving quadratic equations by completing the square

3	So	ve by completing the square.		
	a	$x^2 - 4x - 3 = 0$	b	$x^2 - 10x + 4 = 0$
	c	$x^2 + 8x - 5 = 0$	d	$x^2 - 2x - 6 = 0$
	е	$2x^2 + 8x - 5 = 0$	f	$5x^2 + 3x - 4 = 0$

- 4 Solve by completing the square.
 - **a** (x-4)(x+2) = 5
 - **b** $2x^2 + 6x 7 = 0$
 - **c** $x^2 5x + 3 = 0$

Hint

Get all terms onto one side of the

Solving quadratic equations by using the formula

- 5 Solve, giving your solutions in surd form. **a** $3x^2 + 6x + 2 = 0$ **b** $2x^2 - 4x - 7 = 0$
- 6 Solve the equation $x^2 7x + 2 = 0$ Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where *a*, *b* and *c* are integers.
- 7 Solve $10x^2 + 3x + 3 = 5$ Give your solution in surd form.

Hint Get all terms onto one side of the equation.

Extend

- 8 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form when necessary.
 - **a** 4x(x-1) = 3x-2
 - **b** $10 = (x+1)^2$
 - **c** x(3x-1) = 10

Solving linear simultaneous equations using the elimination method

Solve these simultaneous equations.

1	4x + y = 8	2	3x + y = 7
	x + y = 5		3x + 2y = 5
3	4x + y = 3	4	3x + 4y = 7
	3x - y = 11		x - 4y = 5
5	2x + y = 11	6	2x + 3y = 11
	x - 3y = 9		3x + 2y = 4

Solving linear simultaneous equations using the substitution method

Solve these simultaneous equations.

7	y = x - 4	8	y = 2x - 3
	2x + 5y = 43		5x - 3y = 11
9	2y = 4x + 5	10	2x = y - 2
	9x + 5y = 22		8x - 5y = -11
11	3x + 4y = 8	12	3y = 4x - 7
	2x - y = -13		2y = 3x - 4
13	3x = y - 1	14	3x + 2y + 1 = 0
	2y - 2x = 3		4y = 8 - x

Extend

15 Solve the simultaneous equations 3x + 5y - 20 = 0 and $2(x + y) = \frac{3(y - x)}{4}$.

Linear inequalities

1	Solve these inequalities.					
	a	4x > 16	b	$5x-7 \leq 3$	c	$1 \ge 3x + 4$
	d	5 - 2x < 12	e	$\frac{x}{2} \ge 5$	f	$8 < 3 - \frac{x}{3}$
2	Solve these inequalities.					
	a	$\frac{x}{5} < -4$	b	$10 \ge 2x + 3$	c	7 - 3x > -5
3	Sol	ve				
	a	$2 - 4x \ge 18$	b	$3 \le 7x + 10 < 45$	c	$6-2x \ge 4$
				4-5x < -3x		
4	Sol	ve these inequalities.				
	a	3t + 1 < t + 6		b $2(3n-1)$	$\geq n +$	5
5	Sol	ve.				
	a	3(2-x) > 2(4-x) +	4	b $5(4-x)^{2}$	> 3(5 -	(x) + 2

Extend

6 Find the set of values of x for which 2x + 1 > 11 and 4x - 2 > 16 - 2x.

Straight line graphs

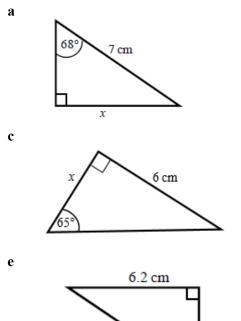
1 Find the gradient and the *y*-intercept of the following equations.

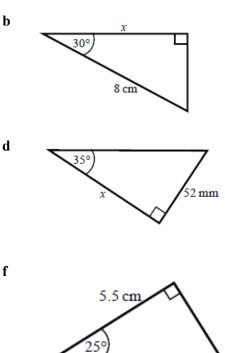
a	y = 3x + 5	b	$y = -\frac{1}{2}x - 7$	
c	2y = 4x - 3	d	x + y = 5	Hint Rearrange the equations
e	2x - 3y - 7 = 0	f	5x + y - 4 = 0	Rearrange the equations to the form $y = mx + c$

2 Copy and complete the table, giving the equation of the line in the form y = mx + c.

Gradient	y-intercept	Equation of the line
5	0	
-3	2	
4	—7	

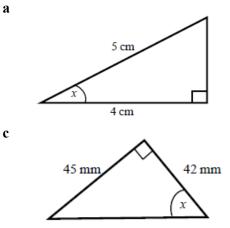
- 3 Find, in the form ax + by + c = 0 where a, b and c are integers, an equation for each of the lines with the following gradients and y-intercepts.
 - agradient $-\frac{1}{2}$, y-intercept -7bgradient 2, y-intercept 0cgradient $\frac{2}{3}$, y-intercept 4dgradient -1.2, y-intercept -2
- 4 Write an equation for the line which passes though the point (2, 5) and has gradient 4.
- 5 Write an equation for the line which passes through the point (6, 3) and has gradient $-\frac{2}{3}$
- 6 Write an equation for the line passing through each of the following pairs of points.


a	(4, 5), (10, 17)	b	(0, 6), (-4, 8)
c	(-1, -7), (5, 23)	d	(3, 10), (4, 7)


Extend

7 The equation of a line is 2y + 3x - 6 = 0. Write as much information as possible about this line.

Trigonometry in right-angled triangles


1 Calculate the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

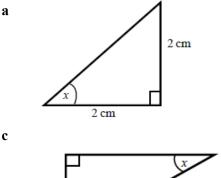
х

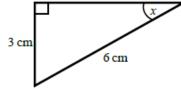
2 Calculate the size of angle *x* in each triangle. Give your answers correct to 1 decimal place.

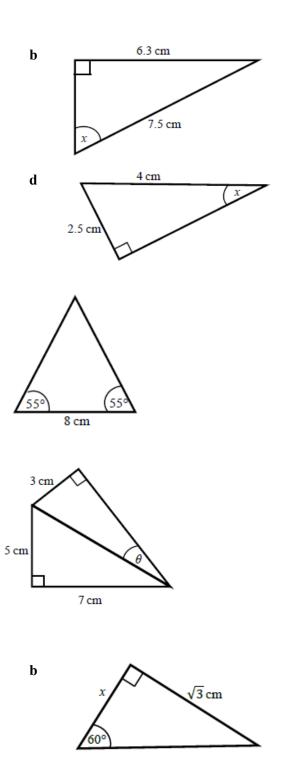
3 Work out the height of the isosceles triangle. Give your answer correct to 3 significant figures.

Hint:

Split the triangle into two right-angled triangles.

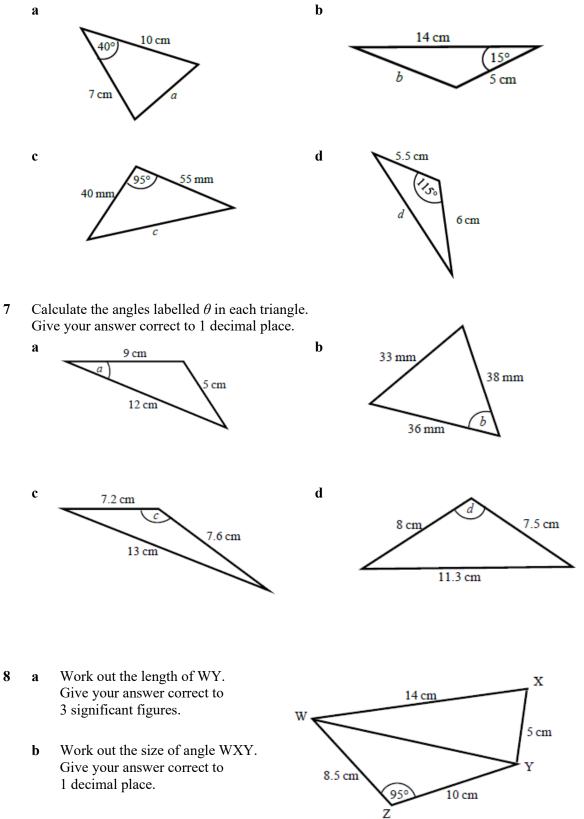

4 Calculate the size of angle θ . Give your answer correct to 1 decimal place.


Hint:

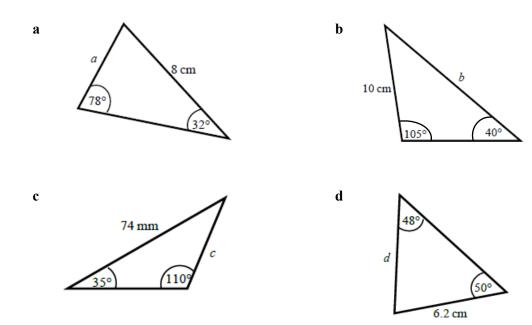

с

First work out the length of the common side to both triangles, leaving your answer in surd form.

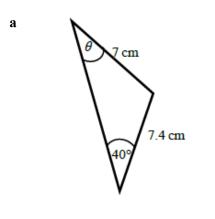
5 Find the exact value of *x* in each triangle.



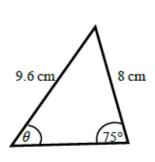
d

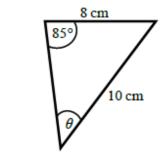

The cosine rule

6 Work out the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

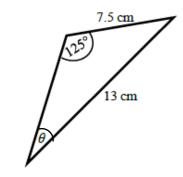


The sine rule


9 Find the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

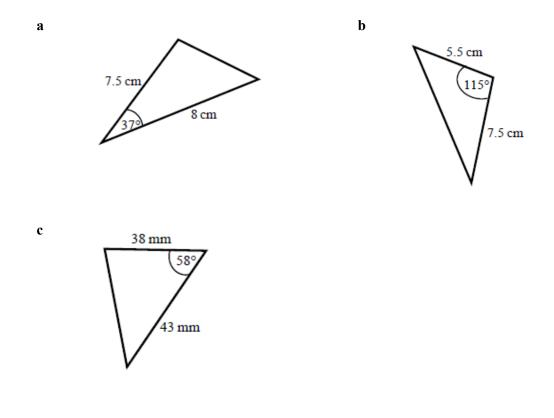


10Calculate the angles labelled ϑ in each triangle.Give your answer correct to 1 decimal place.

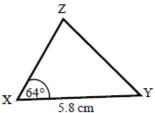

c

b

d

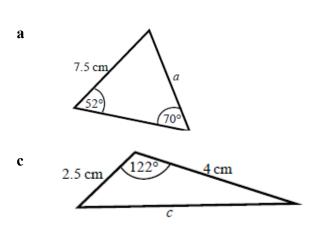


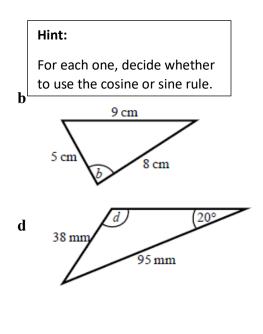
- **11 a** Work out the length of QS. Give your answer correct to 3 significant figures.
 - **b** Work out the size of angle RQS. Give your answer correct to 1 decimal place.

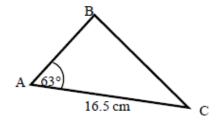


Areas of triangles

Work out the area of each triangle.Give your answers correct to 3 significant figures.




13 The area of triangle XYZ is 13.3 cm².Work out the length of XZ.


Extend

14 Find the size of each lettered angle or side. Give your answers correct to 3 significant figures.

15 The area of triangle ABC is 86.7 cm². Work out the length of BC. Give your answer correct to 3 significant figures.

