

Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Matching and sorting	Everyday objects, buttons, jewels, pompoms, stones, pasta, people – anything!	Cards, five frames, hoops, stories	N/A
One more	Everyday objects, buttons, jewels, pompoms, stones, pasta, people – anything! Songs and stories	Birds in the tree, one more joins Stories - 10 little pirates	N/A
Number bonds to 5	Everyday objects, buttons, jewels, pompoms, stones, pasta, people – anything! Five frames. Numicon.	Five frame, part-part whole. Coloured cubes. Numicon boards pictures.	N/A
number bonds to 10	Everyday objects, buttons, jewels, pompoms, stones, pasta, people – anything! Ten frame. Coloured cubes. numicon	Ten frame and coloured cubes.	N/A
Adding more	Everyday objects, buttons, jewels, pompoms, stones, pasta, people – anything!	Number line, ten frame, part-part whole	N/A

Combining two parts to make a whole: part- whole model	Image: state stat	3 3	4 + 3 = 7 $10 = 6 + 4$ 5 8 3 Use the part-part whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting	90000000000000000000000000000000000000	12 + 5 = 17	5 + 12 = 17
on (structured then unstructured	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	t t <td></td>	
number lines)		Start at the larger number on the number line and count on in ones or in one jump to find the answer.	Place the larger number in your head and count on the smaller number to find your answer.

single digits

Adding

on

74 75 76 77

73

63

Subtraction

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away.	Cross out drawn objects to show what has been taken away.	18 - 3= 15
	6 − 2 = 4	$ \begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	8-2=6
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones.	Count back on a number line or number track 9 10 11 12 13 14 15	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.
	13 – 4	Start at the bigger number and count back the smaller number showing the jumps on the number line.	
	Use counters and move them away from the group as you take them away counting backwards as you go.	-10 -10	
		This can progress all the way to counting back using two 2 digit numbers.	

Multiplication

Objective and Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number.	Draw pictures to show how to double a number. Double 4 is 8	16 10 10 10 10 10 10 10 10 10 12 Partition a number and then double each part before recombining it back together.
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25 , 30

Repeated addition		There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $	Write addition sentences to describe objects and pictures.
	Use different 3 + 3 + 3 Use different objects to add equal groups.	5 5 5 5 5 5 5 5 5 5 5 5 5 5	2+2+2+2=10
Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences.	Use an array to write multiplication sentences and reinforce repeated addition. 000000000000000000000000000000000000

Show the link with arrays to first introduce the grid method showing the area each part is represented by clearly. 4 rows of 10, 4 rows of 3

Move on to using Base 10 to progress towards a more compact method. 4 rows of 13

x	Т	U

Move on to place value counters to show how we are finding groups of a number.We are multiplying by 4 so we need 4 rows.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

×	30	5
7	210	35

210 + 35 = 245

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

23×17

Column multiplication Children can continue to be supported by place value counters at the stage of multiplication.

It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.

59 59 59 59 59 8 × 60 - 8 *6 = 48 8 * 60 = 480 1.80 - 8 = (472)

Start with long multiplication, reminding the children about lining up their numbers clearly in columns.

If it helps, children can write out what they are solving next to their answer, especially where 2 digit numbers are the multiplier.

32 × 24 8 120 40 600 768	(4 x 2) (4 x 30) (20 x 2) (20 x 30)
	oves on to the more ct written method
	² ³ ¹ 1 3 4 2
	x 18
	13420
	10736
	24156

<u>Division</u>

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use pictures or shapes to share quantities. 323	Share 9 buns between three people. $9 \div 3 = 3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. 0 1 2 3 4 5 6 7 8 9 10 11 12 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	28 ÷ 7 = 4 Divide 28 into 7 groups. How many are in each group?

Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created.	Image: Second
	Eg $15 \div 3 = 5$ $5 \times 3 = 15$ $15 \div 5 = 3$ $3 \times 5 = 15$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.
Division with a remainder	14 ÷ 3 = Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. 0 4 8 12 13 $29 + 8 = 3$ REMAINDER 5 $\uparrow \uparrow $

Long division	Children are encouraged to jot WIKA (What I Know Already) alongside the abstract long division method. Not all multiplicands will need ot be calculated for efficiency. $\frac{W1kA}{1 \times 26}$
	$5x = 130$ $6x = 208$ $7x = 234$ $10 \times = 260$ For some children, division by chunking is a more workable method. Here children work out 'chunks' which are factors of the divisor. They continue to subtract chunks until there is nothing left or they are left with a remainder. $\frac{86}{2836}$ $\frac{10x = 260}{10x = 260}$ $\frac{150}{30(s)}$ $\frac{80x = 2080}{5x = 130}$

Fractions

Objective and Strategies	Concrete	Pictorial	Abstract
Recognise, find and name a half as one of two equal parts of an object, shape or quantity		A whole apple Half an apple	Half of $10 = ?$ Half of $8 = ?$ $\frac{1}{2}$ of $14 = ?$
Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity			Half of 20 = ? Half of 12 = ? $\frac{1}{4}$ of 8 = ?

Recognise, find and write fractions of a discrete set of objects; unit and non- unitary fractions and use fractions as numbers		$\frac{3}{4}$ $\frac{3}{6}$ $\frac{2}{5}$ $\frac{3}{5}$	1/5 of 15 sweets = 3 Because $15 \div 5 = 3$ 2/5 of 15 sweets = 6 because $15 \div 5 = 3$ and $3 \times 2 = 6$
Recognise and show, using diagrams, equivalent fractions with small denominators	two halves four quarters $\frac{2}{2}$ $\frac{4}{4}$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array} + \begin{array}{c} \end{array}{c} \end{array}{c} $	$\frac{5}{7} + \frac{1}{7} = \frac{6}{7}$ $\frac{5}{8} - \frac{2}{8} = \frac{3}{8}$

Add and subtract fractions with the same denominator	5/ 1/0 5/ 1/5 - 1/5 - 1/5	$ \begin{array}{c} \hline 1 \\ 5 \end{array} + \begin{array}{c} \hline 3 \\ 5 \end{array} = \begin{array}{c} 4 \\ 5 \end{array} $	$\frac{5}{7} + \frac{1}{7} = \frac{6}{7}$ $\frac{5}{8} - \frac{2}{8} = \frac{3}{8}$
Compare and order unit fractions with the same denominator	01-1-0		2 <u>3</u> 57 88
Count up and down in hundredths; recognise that hundredths arise when dividing an object by 100 and dividing tenths by 10.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	thousands hundreds tens ones tenths hundredths = 100	$\frac{1}{100} \text{ of } 60 = 0.6$ because 60 + 100 = 0.6 $\frac{1}{10} \text{ of } 70 = 0.7$ so $\frac{1}{100} \text{ of } 70 = 0.07$

Add and subtract fractions with the same denominator	$ \begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Sam eats 2 of a whole pizza. How much 7 oes he have left? Lucy and Ben both eat much have they eat $\frac{3}{8}$ altogether?
Solve problems involving increasingly harder fractions to calculate quantities and fractions to divide quantities, including non- unit fractions where the solution is a whole number	$\frac{2}{3} = \frac{1}{3} = \frac{1}{3}$ $\frac{2}{5} = \frac{1}{5} = \frac{1}{5}$ $\frac{1}{5} = \frac{1}{5} = \frac{1}{5}$ $\frac{1}{5} = \frac{1}{5} = \frac{1}{5}$	$\frac{2}{3} \text{ of £18}$ $\frac{2}{3} \text{ f18} \div 3 = \text{f6}$ $\frac{2}{5} \text{ f6} \times 2 = \text{f12}$ Attention should also be drawn to the parallel questions 2/3 of 33 and 2/3 x 33

Add and subtract fractions with the same denominators and denominators that are multiples of the same numbers	$\frac{1}{50} + \frac{5}{20} + \frac{13}{20}$ 50. $\frac{2}{5} + \frac{1}{4} + \frac{13}{20}$	Children learn that before adding or subtracting fractions, all the denominators must be the same. Teach that to do this, we find a common denominator and what you do to the bottom, you do to the top'.	$\frac{\frac{2}{5} - \frac{1}{4}}{\frac{2}{5} - \frac{8}{20}} = \frac{\frac{1}{4}}{\frac{2}{5} - \frac{5}{20}} = \frac{3}{20}$ so, $\frac{\frac{8}{20} - \frac{5}{20}}{\frac{2}{5} - \frac{1}{4}} = \frac{3}{20}$
Multiply fractions and mixed numbers, supported by materials and diagrams	$ \begin{array}{c} $	$\bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes$ $4\frac{2}{4}$ altogether	$\frac{3}{4} \times 6 = \frac{18}{4}$ Change to a mixed number: $\frac{18}{4} = 4\frac{2}{4}$

Updated January 2024