## Addition

| Objective and <br> Strategies | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Matching and <br> sorting | Everyday objects, buttons, <br> jewels, pompoms, stones, <br> pasta, people -anything! | Cards, five frames, hoops, stories | $\mathrm{N} / \mathrm{A}$ |
| One more | Everyday objects, buttons, <br> jewels, pompoms, stones, <br> pasta, people - anything! <br> Songs and stories | Birds in the tree, one more joins <br> Stories - 10 little pirates | $\mathrm{N} / \mathrm{A}$ |
| Number bonds to <br> 5 | Everyday objects, buttons, <br> jewels, pompoms, stones, <br> pasta, people - anything! Five <br> frames. Numicon. | Five frame, part-part whole. <br> Coloured cubes. Numicon boards pictures. | $\mathrm{N} / \mathrm{A}$ |
| number bonds <br> to 10 | Everyday objects, buttons, jewels, <br> pompoms, stones, pasta, people - <br> anything! <br> Ten frame. Coloured <br> cubes. numicon | Ten frame and coloured cubes. | $\mathrm{N} / \mathrm{A}$ |
| Adding more | Everyday objects, buttons, jewels, <br> pompoms, stones, pasta, people - <br> anything! | Number line, ten frame, part-part whole | $\mathrm{N} / \mathrm{A}$ |


| Combining two parts to make a whole: partwhole model | Use cubes to add two numbers together as a group or in a bar. | 8 1 |  |
| :---: | :---: | :---: | :---: |
| Starting at the bigger number and counting on (structured then unstructured number lines) | ceceseces $-\mathrm{mm}-$ <br> Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. | $12+5=17$ <br> Start at the larger number on the number line and count on in ones or in one jump to find the answer. | $5+12=17$ <br> Place the larger number in your head and count on the smaller number to find your answer. |

Kingsclere C of E Primary School Progression in Calculations - Updated March 2023

| Adding three single digits | $4+7+6=17$ <br> Put 4 and 6 together to make 10. Add on 7. <br> Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit. |  | $\begin{aligned} & 4+7+6=17 \\ & 4+6=10 \\ & 10+7=17 \end{aligned}$ <br> Combine the two numbers that make 10 and then add on the remainder. |
| :---: | :---: | :---: | :---: |
| Adding multiples of ten | $50=30+20$ <br> Model using dienes and bead strings | $46+\underset{\text { 3'tens }}{30}=76$ | Place the number in your head and count forwards in multiples of 10 |
| Starting at the bigger number and counting on 2-digit+2-digit | Dienes when not regrouping | Unstructured number line Partitioning 10 s and 1 s $\begin{aligned} & 63+16=79 \\ & \text { lten 6ones } \end{aligned}$ | $22+21$ <br> Start with bigger number, add the 10 s then the 1s ( unstructured number showing jumps) |

Kingsclere C of E Primary School Progression in Calculations - Updated March 2023

| Regrouping to make 10. |  | Use pictures or a number line. Regroup or partition the smaller number to make 10 . | $7+4=11$ <br> If I am at seven, how many more do I need to make 10 ? How many more do I add on now? |
| :---: | :---: | :---: | :---: |
| Column method- no regrouping/ exchanging | $24+15=$ <br> Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. <br> NOTE: tens and ONES not tens and units | After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions. | Calculations $\begin{array}{r} 21+42= \\ 21 \\ +42 \end{array}$ |

## Kingsclere C of E Primary School Progression in Calculations - Updated March 2023



## Subtraction

| Objective and Strategies | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Taking away ones | Use physical objects, counters, cubes etc to show how objects can be taken away. $6-2=4$ | Cross out drawn objects to show what has been taken away. $15-3=$ $\square$ | $\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$ |
| Counting back | Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. <br> Use counters and move them away from the group as you take them away counting backwards as you go. | Count back on a number line or number track <br> Start at the bigger number and count back the smaller number showing the jumps on the number line. <br> This can progress all the way to counting back using two 2 digit numbers. | Put 13 in your head, count back 4. What number are you at? Use your fingers to help. |

Kingsclere C of E Primary School Progression in Calculations - Updated March 2023

| Find the difference | Compare amounts and objects to find the difference <br> Use cubes to build towers or make bars to find the difference <br> Use basic bar models with items to find the difference | Lisa is 13 years old. Her sister is 22 years old <br> Find the difference in age between them. <br> Draw bars to find the difference between 2 numbers. | Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches. |
| :---: | :---: | :---: | :---: |
| Part Part Whole Model | Link to addition- use the part whole model to help explain the inverse between addition and subtraction. <br> If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$ | Use a pictorial representation of objects to show the partpart whole model. | Move to using numbers within the part-part whole model. |
| Make 10 | $14-9=$ <br> Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9. | Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer. | $16-8=$ <br> How many do we take off to reach the next 10? <br> How many do we have left to take off? |

Kingsclere C of E Primary School Progression in Calculations - Updated March 2023

| Counting back 2 digit - 2 digit | Counting back using dienes by making the numinuend and removing the subrahend using dienes. Take tens first progress to exchange as necessaery. | Unstructured number line | $59-32=27$ | $27-13$ <br> Taking away 10s follow by ones in small jumps |
| :---: | :---: | :---: | :---: | :---: |
| Column method without regrouping/ exchange |  <br> Use Base 10 to make the bigger number then take the smaller number away. <br> NOTE: tens and ONES not tens and units <br> Show how you partition numbers to subtract. Again make the larger number first. |   | calculations Draw the Base <br> 10 or place <br> value counters <br> -22 <br> alongside the <br> written <br> calculation to <br> help to show <br> working.  <br> $\frac{\text { calculations }}{176-64=}$ <br> 176  <br> $\frac{112}{112}$  | $\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ <br> This will lead to a clear written column subtraction. |




## Multiplication

| Objective and Strategies | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Doubling | Use practical activities to show how to double a number. | Draw pictures to show how to double a number. <br> Double 4 is 8 | Partition a number and then double each part before recombining it back together. |
| Counting in multiples | Count in multiples supported by concrete objects in equal groups. | Use a number line or pictures to continue support in counting in multiples. | Count in multiples of a number aloud. <br> Write sequences with multiples of numbers. $2,4,6,8,10$ <br> $5,10,15,20,25,30$ |


| Repeated addition |  | $5+5+5=15$ | Write addition sentences to describe objects and pictures. |
| :---: | :---: | :---: | :---: |
| Arraysshowing commutative multiplication | Create arrays using counters/ cubes to show multiplication sentences. |  <br> Link arrays to area of rectangles. | Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$ |

## Kingsclere C of E Primary School Progression in Calculations - Updated March 2023

| Grid (Area) Method | Show the link with arrays to first introduce the grid method showing the area each part is represented by clearly. <br> 4 rows of 10, 4 rows of 3 <br> Move on to using Base 10 to progress towards a more compact method. <br> 4 rows of 13 <br> Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows. <br> Fill each row with 126. <br> Add up each column, starting with the ones making any exchanges needed. | Children can represent the work they have done with place value counters in a way that they understand. <br> They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below. | Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$ <br> Moving forward, multiply by a 2 digit number showing the different rows within the grid method.$23 \times 17$$x$ 20 3 <br> 10 200 30 <br> 7 140 21 <br>    |
| :---: | :---: | :---: | :---: |

## Kingsclere C of E Primary School Progression in Calculations - Updated March 2023



| Column multiplication | Children can continue to be supported by place value counters at the stage of multiplication. <br> It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below. | Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods. $\square$ $\begin{aligned} & 4+4+8+8+16 \\ & 5 \times 8=40 \text { juqs } \end{aligned}$ | Start with long multiplication, reminding the children about lining up their numbers clearly in columns. $\begin{array}{r} 27 \\ \times 6 \\ \frac{62}{4} \\ \hline \frac{14}{92}(4 \times 3) \\ \hline(4 \times 20) \end{array}$ <br> If it helps, children can write out what they are solving next to their answer, especially where 2 digit numbers are the multiplier. $\begin{aligned} 32 & \\ \times \quad 24 & \\ \cline { 1 - 1 } 8 & (4 \times 2) \\ 120 & (4 \times 30) \\ 40 & (20 \times 2) \\ 600 & (20 \times 30) \end{aligned}$ <br> This moves on to the more compact written method |
| :---: | :---: | :---: | :---: |

## Division

| Objective and Strategies | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Sharing objects into groups | I have 10 cubes, can you share them equally in 2 groups? | Children use pictures or shapes to share quantities. $8 \div 2=4$ | Share 9 buns between three people. $9 \div 3=3$ |
| Division as grouping | Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. | Use a number line to show jumps in groups. The number of jumps equals the number of groups. <br> Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. | $28 \div 7=4$ <br> Divide 28 into 7 groups. How many are in each group? |

Division within
arrays
Division with a

## Kingsclere C of E Primary School Progression in Calculations - Updated March 2023

| Long division |  | Children are encouraged to jot WIKA (What I Know Already) alongside the abstract long division method. Not all multiplicands will need ot be calculated for efficiency. $\begin{aligned} & \frac{W 1 k A}{1 x=26} \\ & 2 x \end{aligned}$ <br> For some children, division by chunking is a more workable method. Here children work out 'chunks' which are factors of the divisor. They continue to subtract chunks until there is nothing left or they are left with a remainder. |  |
| :---: | :---: | :---: | :---: |

Kingsclere C of E Primary School Progression in Calculations - Updated March 2023
Short division

## Fractions

| Objective and <br> Strategies | Concrete | Abstract <br> Recognise, <br> find and name <br> a half as one of <br> two equal parts <br> of an object, <br> shape or <br> quantity |
| :--- | :--- | :--- | :--- | :--- |
| Recognise, <br> find and name <br> a quarter as $10=?$ <br> one of four <br> equal parts of <br> an object, <br> shape or <br> quantity |  |  |


| Recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity. |  |  | 2 of $8=$ $\square$ |
| :---: | :---: | :---: | :---: |
| Write simple fractions and recognise the equivalence of 2/4 and 1/2. |  |  | $\frac{1}{2} \text { of } 6=$ |
| Count up and down in tenths; recognise that tenths arise from dividing and object into ten equal parts and in dividing one digit numbers or quantities by ten. |  | $\square$ $\frac{3}{10}$ $\frac{3}{10}$ <br> $\frac{3}{10}$ | $\begin{gathered} \frac{1}{10} \text { of } 6=0.6 \\ \text { becouse } \\ 6+10=0.6 \\ \frac{1}{10} \text { of } 7=0.7 \\ \text { because } \\ 7+10=0.7 \end{gathered}$ |


| Recognise, find and write fractions of a discrete set of objects; unit and nonunitary fractions and use fractions as numbers |  | This would progress to using a bar model $\frac{2}{5} \text { of } 25=10$ $25 \div 5=5$ | $1 / 5$ of 15 sweets = 3 <br> Because $15 \div 5=3$ <br> $2 / 5$ of 15 sweets $=6$ because $15 \div 5=3$ <br> and $3 \times 2=6$ |
| :---: | :---: | :---: | :---: |
| Recognise and show, using diagrams, equivalent fractions with small denominators |  | $\frac{2}{8}=\frac{4}{16}$ | $\frac{5}{7}+\frac{1}{7}=\frac{6}{7}$ $\frac{5}{8}-\frac{2}{8}=\frac{3}{8}$ |


| Add and subtract fractions with the same denominator |  |  | $\begin{aligned} & \frac{5}{7}+\frac{1}{7}=\frac{6}{7} \\ & \frac{5}{8}-\frac{2}{8}=\frac{3}{8} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Compare and order unit fractions with the same denominator |  |  |  |
| Count up and down in hundredths; recognise that hundredths arise when dividing an object by 100 and dividing tenths by 10 . |  |  | $\begin{gathered} \frac{1}{100} \text { of } 60=0.6 \\ \text { becouse } 60+100=0.6 \\ \frac{1}{10} \text { of } 70=0.7 \\ 5_{0} 0 \text { of } 70=0.07 \\ \frac{1}{100} \end{gathered}$ |


| Recognise and write decimal equivalents to $1 / 2,1 / 4$ and $3 / 4$. |  |  | $\begin{aligned} & \frac{1}{2}=0.5 \\ & \frac{1}{4}=0.25 \\ & \frac{3}{4}=0.75 \\ & \frac{3}{4} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Recognise and show, using diagrams, families of common equivalents |  | $\square$ <br> 0.6 six tenths <br> 0.60 sixty hundredths | $\begin{gathered} \frac{1}{10}=0.1 \\ \frac{3}{10}=0.3 \\ \frac{5}{10}=\frac{1}{2}=0.5 \\ \frac{8}{100}=0.08 \\ \frac{2}{3}=\frac{4}{6} \\ \frac{3}{5}=\frac{6}{10} \\ \frac{2}{12}=\frac{1}{6} \end{gathered}$ |

Add and
subtract
fractions with
the same
denominator

| Solve |
| :--- |
| problems |
| involving |
| increasingly |
| harder |
| fractions to |
| calculate |
| quantities and |
| fractions to |
| divide |
| quantities, |
| including non- |
| unit fractions |
| where the |
| solution is a |
| whole number |



| Compare and order fractions whose denominators are all multiples of the same number |  |  |  |
| :---: | :---: | :---: | :---: |
| Recognise mixed numbers and improper fractions. Convert from one form to the other and write mathematical statements >1 as a mixed number | 1 |  | $\frac{7}{2}=3 \frac{1}{2}$ <br> becouse $7+2=3$ with 1 half left over $2 \frac{1}{3}=\frac{7}{3}$ <br> becouse 2 $\quad 3=6$ with 1 third left to add |



Recognise, and use thousandths and relate them to tenths, hundredths and decimal equivalents. Recognise \% symbol and understand the meaning; write \% as a fraction, decimal and percentage. Add and subtract fractions with different denominators and mixed numbers using equivalent fractions


| Compare and order fractions including fractions $>1$ |  |  | Which is greater? $\frac{2}{8} \times \frac{6}{16}$ <br> Order the following: $\begin{aligned} & \frac{5}{12}, \frac{2}{3}, \frac{5}{6} \\ & \frac{5}{12}, \frac{8}{12}, \frac{10}{12} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Use common factors to simplify fractions; use common multiples to express fractions in the same denomination |  |  | $\overbrace{\frac{18}{36}}^{\frac{18}{4}}=\frac{6}{\pi^{12}}=\frac{1}{2}$ |




[^0]
[^0]:    Updated January 2024

